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Partie 1 : Thermodynamique
Solution de la série 1

Formes différentielles
Rappel
Différentielle totale :
Soit une fonction f(x, y) à deux variables, sa différentielle totale est donnée par :

df =
(

∂f

∂x

)
y

dx +
(

∂f

∂y

)
x

dy

Cette expression représente la variation de f lorsque x et y varient simultanément.

Différentielle totale exacte (DTE) :
Une différentielle totale df est dite exacte s’il existe une fonction f(x, y) telle que :

df =
(

∂f

∂x

)
y

dx +
(

∂f

∂y

)
x

dy

Avec la condition de symétrie croisée :

(
∂2f

∂x∂y

)
=
(

∂2f

∂y∂x

)

Dans ce cas, df ne dépend pas du chemin suivi entre deux points, mais uniquement
de l’état initial et final du système (Équation d’état).

Exercice 1

f(x, y) = x3 + 2xy + 4y2

1. On calcule les dérivées premières :(
∂f

∂x

)
y

= 3x2 + 2y

(
∂f

∂y

)
x

= 2x + 8y
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Maintenant on peut écrire facilement la différentielle df :

⇒ df =
(

∂f

∂x

)
y

dx +
(

∂f

∂y

)
x

= (3x2 + 2y)dx + (2x + 8y)dy

donc df = (3x2 + 2y)dx + (2x + 8y)dy

2. Ensuite, on calcule les dérivées secondes :
— Premièrement on calcule les dérivées secondes normales :

(
∂2f

∂x2

)
y

=
 ∂

∂x

(
∂f

∂x

)
y


y

=
[

∂

∂x
(3x2 + 2y)

]
y

= 6x

(
∂2f

∂y2

)
x

=
[

∂

∂y

(
∂f

∂y

)
x

]
x

=
[

∂

∂x
(2x + 8y)

]
x

= 8

— Deuxièmement on calcule les dérivées secondes croisées :

∂2f

∂x∂y
=
[

∂

∂x

(
∂f

∂y

)
x

]
y

=
[

∂

∂x
(2x + 8y)

]
y

= 2

∂2f

∂y∂x
=
 ∂

∂y

(
∂f

∂x

)
y


x

=
[

∂

∂y
(3x2 + 2y)

]
x

= 2

3. Après on compare les dérivées secondes croisées pour voir si elles sont égales. Si
elles sont égales donc le théorème de Schwarz est vérifié. Donc on peut dire que
df est une différentielle totale exacte (D.T.E).

Puisque ∂2f

∂y∂x
= ∂2f

∂x∂y
⇔ df est une différentielle totale exacte (D.T.E).

Exercice 2

1. La différentielle de la fonction f(x, y) :
On a : f(x, y) = x2

y
+ x

y2 − 2x3y2

(
∂f

∂x

)
y

= 2x

y
+ 1

y2 − 6x2y2

et (
∂f

∂y

)
x

= −x2

y2 − 2x

y3 − 4x3y

Or
df =

(
∂f

∂x

)
y

dx +
(

∂f

∂y

)
x

dy

⇒ df =
(

2x
y

+ 1
y2 − 6x2y2

)
dx +

(
−x2

y2 − 2x
y3 − 4x3y

)
dy

2. Rappel : soit la forme différentielle δf = P (x, y)dx + Q(x, y)dy, la condition
nécessaire et suffisante pour que δf soit une différentielle totale (ou exacte) est :
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(
∂P
∂y

)
x

=
(

∂Q
∂x

)
y

en écrits alors : δf = df

(a) Laquelle des δf et δg est une différentielle totale ?
— Pour δf

On a
δf(x, y) = x2

y2 dx − 2
3

x3

y3 dy

(
∂P

∂y

)
x

= −2x2

y3

et (
∂Q

∂x

)
y

= −2x2

y3

On observe (
∂P

∂y

)
x

=
(

∂Q

∂x

)
y

Donc δf est une différentielle totale exacte (δf = df)
— Pour δg

On a
δg(x, y) =

(
x2

y
− 2y

)
dx −

(
x3

y2 + 3x

)
dy

(
∂P

∂y

)
x

= −x2

y2 − 2

et (
∂Q

∂x

)
y

= −
(

3x2

y2 + 3
)

On observe (
∂P

∂y

)
x

̸=
(

∂Q

∂x

)
y

Donc δg n’est pas une différentielle totale exacte (δg ̸= dg)

3. L’équation d’état f(P, V, T ) = 0 ⇒ P = P (V, T ), V = V (P, T ), T = T (P, V ).

(a) Les expressions de dP et dV :


dP =
(

∂P

∂V

)
T

dV +
(

∂P

∂T

)
V

dT −→ (E1)

dV =
(

∂V

∂P

)
T

dP +
(

∂V

∂T

)
P

dT −→ (E2)

(b) À partir de (E1), en fixant la température T (dT = 0), on obtient :

dP =
(

∂P

∂V

)
T

dV =⇒
(

∂V

∂P

)
T

= 1(
∂P

∂V

)
T
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Ainsi : (
∂P

∂V

)
T

(
∂V

∂P

)
T

= 1

En fixant maintenant la pression P (dP = 0) dans (E1), on a :

0 =
(

∂P

∂V

)
T

dV +
(

∂P

∂T

)
V

dT

d’où : (
∂V

∂T

)
P

= −

(
∂P

∂T

)
V(

∂P

∂V

)
T

On en déduit : (
∂V

∂T

)
P

(
∂P

∂V

)
T

= −
(

∂P

∂T

)
V

À V constant (dV = 0), (E1) donne :

dP =
(

∂P

∂T

)
V

dT ⇒
(

∂T

∂P

)
V

= 1(
∂P

∂T

)
V

.

En combinant ces relations :
(

∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −1.
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Démonstration (
∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −1

Deuxième méthode : (par développement des différentielles totales)

dV =
(

∂V

∂P

)
T

dP +
(

∂V

∂T

)
P

dT (1)

dP =
(

∂P

∂V

)
T

dV +
(

∂P

∂T

)
V

dT (2)

En remplaçant (2) dans (1) :

dV =
(

∂V

∂P

)
T

[(
∂P

∂V

)
T

dV +
(

∂P

∂T

)
V

dT

]
+
(

∂V

∂T

)
P

dT

dV =
(

∂V

∂P

)
T

(
∂P

∂V

)
T

dV +
[(

∂V

∂P

)
T

(
∂P

∂T

)
V

+
(

∂V

∂T

)
P

]
dT

On regroupe les termes :[
1 −

(
∂V

∂P

)
T

(
∂P

∂V

)
T

]
dV =

[(
∂V

∂P

)
T

(
∂P

∂T

)
V

+
(

∂V

∂T

)
P

]
dT

0 =
[(

∂V

∂P

)
T

(
∂P

∂T

)
V

+
(

∂V

∂T

)
P

]
dT

(
∂V

∂P

)
T

(
∂P

∂T

)
V

+
(

∂V

∂T

)
P

= 0

−
(

∂V

∂T

)
P

=
(

∂V

∂P

)
T

(
∂P

∂T

)
V

On en déduit : (
∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −1

(c) Pour une mole de gaz parfait : PV = RT

— P = RT

V
⇒

(
∂P

∂V

)
T

= −RT

V 2

— V = RT

P
⇒

(
∂V

∂T

)
P

= R

P
et

(
∂V

∂P

)
T

= −RT

P 2

— T = PV

R
⇒

(
∂T

∂P

)
V

= V

R
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On vérifie alors :

(
∂P

∂V

)
T

(
∂V

∂P

)
T

= RT

V 2
RT

P 2 = 1(
∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

=
(

−RT

V 2

)(
R

P

)(
V

R

)
= −1

Coefficients thermo-élastiques
Rappel
Les coefficients thermo-élastiques sont des paramètres physiques qui décrivent com-
ment le volume et la pression d’un système changent en réponse à des variables d’état
telles que la température et la pression. Les trois principaux sont les suivants :

— Coefficient de dilatation isobare :

α = 1
V

(
∂V

∂T

)
P

— Coefficient de compression isochore :

β = 1
P

(
∂P

∂T

)
V

— Coefficient de compressibilité isotherme :

χ = − 1
V

(
∂V

∂P

)
T

Exercice 3

1. Pour n moles, l’équation d’état du gaz parfait est : PV = nRT

α = 1
V

(
∂V

∂T

)
P

= 1
V

(
∂ nRT

P

∂T

)
P

= 1
V

nR

P
= 1

T

β = 1
P

(
∂P

∂T

)
V

= 1
P

(
∂ nRT

V

∂T

)
V

= 1
P

nR

V
= 1

T

χ = − 1
V

(
∂V

∂P

)
T

= − 1
V

(
∂ nRT

P

∂P

)
T

= 1
V

nRT

P 2 = 1
P

D’où α = β = 1
T

et χ = 1
P

2. L’équation d’une mole de gaz est :
(

P + a

V 2

)
(V − b) = RT → (1)
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(a) Expression des coefficients α et β en fonction des variables indépendantes V et
T :
— Expression du coefficient α = 1

V

(
∂V

∂T

)
P

En différentiant l’équation (1) à P = Cte, on obtient :

−2 a

V 3 (V − b)dV +
(

P + a

V 2

)
dV = RdT

Eliminons P en remplaçant
(

P + a

V 2

)
par RT

V − b[
RT

V − b
− 2a

(V − b)
V 3

]
dV = RdT

(
dV

dT

)
=
 R

RT
V −b

− 2a (V −b)
V 3


(

dV

dT

)
=
 R

RT V 3−2a(V −b)2

(V −b)V 3


(

dV

dT

)
P

=
[

R(V − b)V 3

RTV 3 − 2a(V − b)2

]

α = 1
V

(
∂V

∂T

)
P

= RV 2(V − b)
RTV 3 − 2a(V − b)2

— Expression du coefficient β = 1
P

(
∂P

∂T

)
V

L’équation (1) s’écrit : P = RT

V − b
− a

V 2

⇒
(

∂P

∂T

)
V

= R

(V − b) ⇒ β = 1(
RT

(V −b) − a
V 2

) R

(V − b) ⇒

β = RV 2

RTV 2 − a(V − b)

(b) Expression du coefficient χ

D’après l’exercice N°2 Qst 3 (b) on a :
(

∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

= −1

⇒
(

− 1
χV

)
(αV )

(
1

βP

)
= −1

⇒ χβ

α
= 1

P
⇒ χ = α

βP

Mais Pβ =
(

∂P

∂T

)
V

= R

V − b
⇒ χ = V 2(V − b)2

RTV 3 − 2a(V − b)2
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(c) A pression interne faible (a → 0)
Lorsque a tend vers 0, l’équation d’état s’écrit :(

P + a

V 2

)
(V − b) = P (V − b) = RT

P (V − b) = RT

Et α s’écrit alors :

α = RV 2(V − b)
RTV 3 − 2a(V − b)2 = RV 2(V − b)

RTV 3

On replace (V − b) par RT

P

α = RV 2RT

RTPV 3

α = R

PV

P = R

αV

On a χ = α

βP
Donc

χ = V

R

α2

β
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