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Chapitre 1
Notions et rappels mathématiques

1.1 Calcul d’incertitudes

1.1.1 Définition
La mesure d’une grandeur est entachée d’une erreur. Une erreur est la différence

entre une valeur mesurée et une vraie valeur. Le problème est de trouver la vraie valeur
qui reste impossible à évaluer. La valeur numérique associée à la mesure n’est connu
que si elle est évaluée de l’incertitude sur cette valeur.
Soit une mesure d’une grandeur A. le résultat est donné sous la forme suivante :

A = a±∆A

Avec
— A : le résultats de la mesure.
— a : la valeur numérique de la mesure.
— ∆ : l’incertitude de la mesure.

Example 1

On désire mesurer une longueur L. Cette mesure est réalisée à l’aide d’une règle ; la
valeur numérique obtenue est 5.32 m et on suppose que l’incertitude de la mesure est
évaluée à 0.02 m. donc le résultat de la mesure est donnée sous la forme :

L = 5.32± 0.02m
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1. Notions et rappels mathématiques

1.2 Calcul vectoriel
La notion de vecteur peut être définie en dimension deux (le plan) ou trois (l’espace

euclidien usuel). Elle se généralise à des espaces de dimension quelconque. Cette notion,
devenue abstraite et introduite par un système d’axiomes, est le fondement de la branche
des mathématiques appelée algèbre linéaire. Le vecteur permet, en physique, de modéliser
des grandeurs qui ne peuvent être complètement définies par un nombre ou une fonction
numérique seuls. Par exemple, pour préciser un déplacement, une vitesse, une force ou
un champ électrique, la direction et le sens sont indispensables. Les vecteurs s’opposent
aux grandeurs scalaires décrites par un simple nombre, comme la masse, la température,
etc.

1.2.1 Définition d’un vecteur
En termes simples, un vecteur est une grandeur qui a une intensité, une direction et

un sens. Il est commode de le représenter par une flèche
−−→
OM = x

−→
i + y

−→
j + z

−→
k

M

y

x

z

i

j
k

O

Les réels uniques x et y sont les coordonnées u point M dans le repère (O, −→i , −→j ,
−→
k ).

1.2.2 Notion de vecteur unitaire
A chaque vecteur on peut associer un vecteur unitaire −→u qui a la même direction

que −→a et de norme égale à un. On obtient le vecteur unitaire en divisant le vecteur
initial par son module :

−→u =
−→a
‖a‖
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1. Notions et rappels mathématiques

u

a

1.2.3 Le produit scalaire
Le produit scalaire est une opération algébrique s’ajoutant aux lois s’appliquant aux

vecteurs. À deux vecteurs, elle associe leur produit, qui est un nombre (ou scalaire, d’où
son nom). Elle permet d’exploiter les notions de la géométrie euclidienne traditionnelle :
longueurs, angles, orthogonalité.

−→a .
−→
b = ‖a‖‖b‖.Cosα

b

a

α

Le produit scalaire de ~a et ~b est donné ainsi par :

~a ·~b = axbx + ayby + azbz

Exemple : Si ~a = 2̂i+ 3ĵ et ~b = 4̂i+ ĵ, alors :

~b ·~b = (2)(4) + (3)(1) = 8 + 3 = 11

Propriétés du produit scalaire

Le produit scalaire possède plusieurs propriétés importantes :

— Commutativité : Le produit scalaire est commutatif, c’est-à-dire que

~a ·~b = ~b · ~a

— Non-associativité : Le produit scalaire n’est pas associatif. En d’autres termes,

~a · (~b · ~c)

n’est pas défini comme un scalaire et un vecteur.
— Distributivité : Le produit scalaire est distributif par rapport à l’addition :

~a · (~b+ ~c) = (~a ·~b) + (~a · ~c)
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1. Notions et rappels mathématiques

1.2.4 Le produit vectoriel
Le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens

orientés à trois dimensions. Le formalisme utilisé actuellement est apparu en 1881 dans
un manuel d’analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en
physique. Les travaux de Hermann Günter Grassmann et William Rowan Hamilton sont
à l’origine du produit vectoriel défini par Gibbs.

Soient deux vecteurs −→a et
−→
b formant un angle α. Par définition, le produit vectoriel

de −→a et
−→
b est le vecteur noté −→a ∧

−→
b tel que :

— la direction de −→a ∧
−→
b est orthogonale à chacun des deux vecteurs.

— le sens de −→a ∧
−→
b donne au triplet (

−→
b ,

−→
b , −→a ∧

−→
b ) une orientation directe : cette

orientation est donnée par la règle des trois doigts de la main droite (pouce, index,
majeur), illustrée ci-dessous.

— la norme de −→a ∧
−→
b est égale à l’aire du parallélogramme construit sur −→a et

−→
b :

‖−→a ∧
−→
b ‖ = ‖−→a ‖‖

−→
b ‖Sinα

Le produit vectoriel de ~a et ~b est défini ainsi par :

~a ∧~b = (aybz − azby) î− (axbz − azbx) ĵ + (axby − aybx) k̂

Exemple : Si ~a = î+ 2ĵ + 3k̂ et ~b = 4̂i+ ĵ + 2k̂, alors :

~a ∧~b =

∣∣∣∣∣∣
î ĵ k̂
1 2 3
4 1 2

∣∣∣∣∣∣ = (−4)̂i+ 10ĵ − 7k̂ = −4̂i+ 10ĵ − 7k̂

1.2.5 La somme des vecteurs
La somme de deux vecteurs ~u et ~v donne un vecteur résultant de l’addition de leurs

composantes respectives :

~u+ ~v = (ux + vx) î+ (uy + vy) ĵ + (uz + vz) k̂

Exemple : Soit ~u = 3̂i+ 2ĵ et ~v = −1̂i+ 4ĵ, alors :

~u+ ~v = (3 + (−1))̂i+ (2 + 4)ĵ = 2̂i+ 6ĵ
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1. Notions et rappels mathématiques
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1.2.6 La soustraction des vecteurs
La soustraction de ~v à ~u est définie par :

~u− ~v = (ux − vx) î+ (uy − vy) ĵ + (uz − vz) k̂

Exemple : Soit ~u = 5̂i+ 3ĵ et ~v = 2̂i+ 4ĵ, alors :

~u− ~v = (5− 2)̂i+ (3− 4)ĵ = 3̂i− 1ĵ
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-5

-4

-3

-2
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7
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y
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1.2.7 Le produit mixte
Le produit mixte de trois vecteurs ~u, ~v et ~w est donné par :

~u · (~v × ~w)
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1. Notions et rappels mathématiques

Exemple : Si ~u = î+ ĵ + k̂, ~v = 2̂i+ 3ĵ + k̂ et ~w = î+ 4ĵ + 2k̂, alors :

~v × ~w =

∣∣∣∣∣∣
î ĵ k̂
2 3 1
1 4 2

∣∣∣∣∣∣ = (2)̂i− (3)ĵ + (5)k̂

et donc
~u · (~v × ~w) = (1)(2) + (1)(−3) + (1)(5) = 2− 3 + 5 = 4
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Chapitre 2
Cinématique du point matériel

2.1 Introduction
L’objet de la cinématique du point est d’étudier le mouvement d’un point au cours

du temps indépendamment des causes qui produisent le mouvement. Les objectifs sont
la détermination des grandeurs cinématiques tels que les vecteurs d’accélération, vitesse,
position et l’équation horaire de la trajectoire de ce point par rapport à un référentiel
choisi par l’observateur.

2.2 Étude descriptive du mouvement d’un point matériel

2.2.1 La position du mobile
La position d’un mobile à un instant t est déterminée par rapport à un repère par

un vecteur
−−→
OM qu’on appelle vecteur position. Son origine est le centre du repère O et

son extrémité est le mobile M. Suivant le repère cartésien dans l’espace (O,−→i ,−→j ,
−→
k ), le

vecteur position s’écrit :

−→r =
−−→
OM = x

−→
i + y

−→
j + z

−→
k

Sur la figure ci-dessous, nous montrons le vecteur position de M suivant le repère
cartésien.
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2. Cinématique du point matériel

M

y

x

z

i

j
k

O

2.2.2 Trajectoire
La trajectoire est la ligne continue qui décrit l’ensemble des positions occupées par

un point matériel au cours du temps dans un référentiel donné. Elle peut être rectiligne,
circulaire ou plus complexe, en fonction du type de mouvement.

- Équation de la trajectoire :

C’est la relation qui lie les coordonnées du mobile x, y, z entre eux indépendamment
du temps. Pour trouver l’équation de la trajectoire, il faut éliminer le temps entre les
équations horaires.

- Exemple :

Considérons un point matériel en mouvement dans le plan avec les équations horaires
suivantes :

x(t) = vxt+ x0 et y(t) = vyt+ y0

où :
— vx et vy sont les composantes des vitesses dans les directions x et y,
— x0 et y0 sont les positions initiales du point à t = 0.

En éliminant le temps t entre les deux équations, nous obtenons l’équation de la
trajectoire. De la première équation, on peut exprimer t comme :

t =
x− x0

vx

En substituant cette expression dans la deuxième équation y(t), on obtient :

y = vy

(
x− x0

vx

)
+ y0
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2. Cinématique du point matériel

En simplifiant, on obtient l’équation de la trajectoire :

y =
vy
vx

x+

(
y0 −

vy
vx

x0

)

Cette équation est de la forme y = ax+ b, où :
— a = vy

vx
est la pente de la ligne droite,

— b = y0 − vy
vx
x0 est l’ordonnée à l’origine.

Cette équation montre que la trajectoire est une ligne droite, ce qui signifie que le
mouvement est rectiligne. La pente a est déterminée par le rapport des vitesses vy et
vx, ce qui indique l’inclinaison de la trajectoire dans le plan (x, y).

La trajectoire peut être observée dans un plan ou dans l’espace, selon les dimensions
dans lesquelles se déroule le mouvement. Elle est un outil fondamental pour analyser et
comprendre le déplacement d’un point matériel.

2.3 Déplacement du mobile

Pendant le mouvement, le mobile occupe des positions différentes. À l’instant t1, il
est au point M1 et à l’instant t2, il est au point M2 (voir figure ci-dessous).

On définit le vecteur de déplacement ~M1M2 comme suit :

~M1M2 = ~M2 − ~M1

où :
— ~M1 est le vecteur position du point M1 à l’instant t1,
— ~M2 est le vecteur position du point M2 à l’instant t2.

Le vecteur de déplacement ~M1M2 représente la variation de position du mobile
entre les instants t1 et t2. Il a une direction allant de M1 vers M2 et une longueur qui
correspond à la distance entre ces deux points. Ce vecteur est fondamental pour analyser
le mouvement du mobile et peut être utilisé pour calculer la vitesse moyenne sur cet
intervalle de temps.

Prof. Raillani 11



2. Cinématique du point matériel
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2.3.1 Le vecteur vitesse
a- La vitesse moyenne

La vitesse moyenne est définie comme le rapport entre le déplacement total ∆~r et
la durée ∆t pendant laquelle ce déplacement a eu lieu. Elle est donnée par l’équation
suivante :

~vmoy =
∆~r

∆t

où :
— ∆~r est le vecteur déplacement, c’est-à-dire la variation de la position.
— ∆t est l’intervalle de temps pendant lequel le déplacement s’est produit.

La vitesse moyenne est une grandeur vectorielle qui indique la direction et la rapidité
du déplacement sur une période donnée.

b- La vitesse instantanée

La vitesse instantanée est la vitesse à un instant précis. Elle correspond à la
limite de la vitesse moyenne lorsque l’intervalle de temps ∆t tend vers zéro. Elle est
donnée par la dérivée de la position ~r(t) par rapport au temps :

~v(t) = lim
∆t→0

∆~r

∆t
=

d~r(t)

dt

où :
— ~r(t) est la position du point matériel à l’instant t.
— d~r(t)

dt
est la dérivée de la position par rapport au temps, appelée aussi vitesse

instantanée.

Prof. Raillani 12



2. Cinématique du point matériel

La vitesse instantanée donne la rapidité et la direction du mouvement à chaque instant.

2.3.2 Le vecteur accélération
a- L’accélération moyenne

L’accélération moyenne est la variation de la vitesse entre deux positions par rapport
au temps. Soit v1 la vitesse du mobile à un instant t1 et v2 sa vitesse à instant t2. Le
mobile subit une accélération moyenne telle que :

−→am =
−→v2 − ~v1
t2 − t1

+
δv

δt

Le vecteur −→am est // à δv et il se dirige vers la concavité de la trajectoire.

b- L’accélération instantanée

L’accélération instantanée est l’accélération à un instant t donné :

~a(t) = lim
∆t→0

∆~v

∆t
=

~v2 − ~v1
t2 − t1

=
d~v

dt
=

d2 ~OM

dt2

Les coordonnées du vecteur accélération suivant les coordonnées cartésiennes sont : Soit :
~OM = x~i+ y~j + z~k

~v =
d ~OM

dt
=

dx

dt
~i+

dy

dt
~j +

dz

dt
~k

~a =
d~v

dt
=

d2x

d2t
~i+

d2y

dt2
~j +

d2z

dt2
~k

2.4 Différents systèmes de coordonnées
En physique, on doit souvent localiser des objets dans l’espace et on se sert pour cela

des coordonnées. On peut situer un point sur une ligne à l’aide d’une seule coordonnée
(abscisse), un point dans un plan à l’aide de deux coordonnées (abscisse et ordonnée) et
un point dans l’espace à l’aide de trois coordonnées (abscisse, ordonnée et côte).

Pour définir des positions dans l’espace, le système de coordonnées utilisé doit
comprendre : un point de référence, appelé origine (souvent noté O), un système d’axes
orientés et des moyens de repérer la position d’un point de l’espace par rapport à l’origine
et aux axes.

Soit donc, un système de trois axes rectangulaires, formé par les trois vecteurs
unitaires orthogonaux ~i, ~j, et ~k et d’origine O et soit M un point de l’espace, sa position
est définie par le vecteur position ~OM L’expression de ce vecteur peut prendre différentes
formes selon le système de coordonnées utilisé.

Prof. Raillani 13



2. Cinématique du point matériel

2.4.1 Coordonnées Cartésiennes
Définitions

Soit le repère fixe orthonormé directe R(O;X,Y, Z) de base orthonormé directe (~i,
~j, ~k). La position d’un point M peut être repérer par ses trois composantes cartésiennes
123 projection orthogonales sur les trois axes du repère. Le vecteur position s’écrit alors :

−−→
OM = x

−→
i + y

−→
j + z

−→
k

(a) La position de M (b) Volume élémentaire

En coordonnées cartésiennes (x, y, z), le volume élémentaire dV s’exprime comme
le produit des différentielles des trois coordonnées :

dV = dx dy dz

Vecteur vitesse en coordonnées cartésiennes

En dérivant l’expression du vecteur position en coordonnées cartésiennes par rapport
au temps, on obtient l’expression de la vitesse en coordonnées cartésiennes :

−→
V (M/R) =

d ~OM

dt
=

dx

dt

−→
i +

dy

dt

−→
j +

dz

dt

−→
k

Les vecteurs de la base (~i, ~j, ~k) des coordonnées cartésiennes étant fixes, leurs
dérivées par rapport au temps sont nulles :

Prof. Raillani 14



2. Cinématique du point matériel

d~i

dt
=

d~j

dt
=

d~k

dt
= 0

On utilise aussi la notation suivante :

~V (M/R) = ẋ~i+ ẏ~j + ż~k

où le point sur la variable signifie la dérivée par rapport au temps.

Vecteur accélération en coordonnées cartésiennes

Pour obtenir les expressions des composantes du vecteur accélération dans les
différents systèmes de coordonnées il faut dériver les expressions du vecteur vitesse
obtenues dans le paragraphe précédent :

~γ(M/R) =
d~V (M/R)

dt
=

d2 ~OM(M/R)

dt2

En utilisant l’expression du vecteur vitesse en coordonnées cartésiennes, on a :

~γ(M/R) =
dẋ~i+ ẏ~j + ż~k

dt

Puisque les vecteurs de la base des coordonnées cartésiennes sont fixes, on dérive
seulement les composantes du vecteur vitesse, ce qui donne

~γ(M/R) =
d2x

dt2
−→
i +

d2y

dt2
−→
j +

d2z

dt2
−→
k

On utilise parfois la notation suivante

~γ(M/R) = ẍ~i+ ÿ~j + z̈~k

où les deux points sur une variable signifie la dérivée seconde de la variable par rapport
au temps.

2.4.2 Coordonnées polaires
Définitions

C’est un système de coordonnées utilisé pour repérer la position d’un point M à
deux dimensions. Ainsi, la position du point M, est repérée par la donnée de la distance
r, qui le sépare de l’origine O et de l’angle θ que fait le vecteur

−−→
OM avec l’axe (OX).

Prof. Raillani 15



2. Cinématique du point matériel

M
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(a) Vecteur de position
−−→
OM

X
ex

ey

Y

rdθ

dr

O

(b) Surface élémentaire

- Le vecteur position : Le vecteur position en coordonnées polaire s’écrit :

~OM = r~er

Avec,
r = ‖ ~OM‖, 0 < r < +∞

θ = (
̂−−→

OM,
−→
i ), 0 < r < 2π

Élément de surface en coordonnées polaires

L’élément de surface infinitésimal s’obtient en considérant :
— une petite variation radiale : dr,
— une petite variation angulaire : dθ.
L’arc correspondant à dθ a une longueur r dθ. Ainsi, l’élément de surface est donné
par :

dS = r dr dθ.

Donc, en coordonnées polaires :

dS = r dr dθ

Lien entre les coordonnées cartésiennes et les coordonnées polaires

En utilisant le schéma dans la figure ci-dessous on peut trouver les relations entre
les coordonnées cartésiennes et les coordonnées polaires :
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2. Cinématique du point matériel

M

r

X
ex

ey
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er
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x
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θ

ey
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O

O

er
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x = rcos(θ)

y = rsin(θ)

Ou inversement
r =

√
x2 + y2

θ = arctan
y

x

On définit la base (~er, ~eθ) associées aux coordonnées polaires. Le vecteur ~er est le vecteur
unitaire de la direction ~OM , et le vecteur ~eθ est le vecteur directement perpendiculaire
à ~er.

Cette base est reliée à la base cartésienne par :

~er = Cos(θ)~i+ Sin(θ)~j

~eθ = −Sin(θ)~i+ Cos(θ)~j

De même, la base cartésienne s’écrit en fonction de la base polaire comme suit :

~i = Cos(θ)~er − Sin(θ)~eθ

~j = Sin(θ)~er + Cos(θ)~eθ

Vecteur vitesse en coordonnées polaires

Pour obtenir l’expression du vecteur vitesse en coordonnées polaires, on dérive le
vecteur position en coordonnées polaires :

~V (M/R) =
d ~OM

dt
=

d(r~er)

dt
=

dr

dt
~er + r

d~er
dt

Prof. Raillani 17



2. Cinématique du point matériel

⇒ ~V (M/R) = ṙ~er + r
d~er
dt

En effet, ~er dépend de façon implicite de t, à travers sa dépendance de l’angle θ.
Ainsi :

d~er
dt

=
d~er
dθ

· dθ
dt

= θ̇~eθ

On obtient alors pour le vecteur vitesse :

~V (M/R) = ṙ~er + rθ̇~eθ

Vecteur accélération en coordonnées polaires

Pour obtenir l’accélération, on dérive le vecteur vitesse :

~a(M/R) =
d~V

dt
=

d

dt
(ṙ~er + rθ̇~eθ)

Développons terme à terme :

~a =
d

dt
(ṙ~er) +

d

dt
(rθ̇~eθ)

~a = r̈~er + ṙ
d~er
dt

+
d(rθ̇)

dt
~eθ + rθ̇

d~eθ
dt

~a = r̈~er + ṙ(θ̇~eθ) + (ṙθ̇ + rθ̈)~eθ + rθ̇
d~eθ
dt

Sachant que d~eθ
dt

= −θ̇~er :

~a = r̈~er + ṙθ̇~eθ + ṙθ̇~eθ + rθ̈~eθ + rθ̇(−θ̇~er)

Regroupons les termes selon les vecteurs de base :

~a =
(
r̈ − rθ̇2

)
~er +

(
2ṙθ̇ + rθ̈

)
~eθ

L’expression finale du vecteur accélération en coordonnées polaires est donc :
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2. Cinématique du point matériel

~a(M/R) = (r̈ − rθ̇2)~er + (2ṙθ̇ + rθ̈)~eθ

2.4.3 Coordonnées cylindriques
Définitions

Il est possible de repérer la position, dans l’espace, d’un point M en utilisant le
système de coordonnées cylindriques. Dans ce système la position du point est repérée
par la donnée de la composante z (comme dans les coordonnées cartésiennes) et de ses
coordonnées polaires qui permettent de repérer la position de la projection orthogonale
du point M sur le plan horizontale.

M

r

y

x

z

ex

ey

ez

er

eθ

ez

(a) La position de M

y

x

z

ex

ey

ez

dr

dz

rdθ

dz

(b) Volume élémentaire

Dans la base cylindrique le vecteur position s’écrit de la façon suivante :

~OM = ~Om+ ~mM = ρ~eρ + z ~ez

Avec,


ρ = |om| ; 0 ≤ ρ < +∞
ϕ = (ôm, i) ; 0 ≤ ϕ ≤ 2π

z = om′ ; −∞ < z < +∞
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2. Cinématique du point matériel

Élément de surface en coordonnées cylindriques

L’élément de surface infinitésimal s’obtient en considérant :
— une petite variation spatial : dz,
— une petite variation angulaire : dθ.
L’arc correspondant à dθ a une longueur Rdθ. Ainsi, l’élément de surface est donné
par :

dS = Rdz dθ.

Donc, en coordonnées cylindriques :

dS = Rdz dθ

Élément de volume en coordonnées cylindriques

L’élément de volume infinitésimal s’obtient en considérant :
— une petite variation radial : dr,
— une petite variation spatial : dz,
— une petite variation angulaire : dθ.
L’arc correspondant à dθ a une longueur r dθ. Ainsi, l’élément de volume est donné
par :

dV = r dr dz dθ.

Donc, en coordonnées cylindriques :

dV = r dr dz dθ

Lien entre les coordonnées cartésiennes et les coordonnées cylindriques

On peut passer du système de coordonnées cylindriques aux coordonnées cartésiennes
en utilisant les relations : 

x = r cos θ

y = r sin θ

z = z

Ou inversement


r =

√
x2 + y2

θ = arctan y
x

z = z
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2. Cinématique du point matériel

La base cylindrique s’écrit en fonction de la base cartésienne comme suit :
er = cos θ~i+ sin θ~j

eθ = − sin θ~i+ cos θ~j
~k = ~k

Vecteur vitesse en coordonnées cylindriques

Pour obtenir l’expression du vecteur vitesse en coordonnées cylindriques on dérive
le vecteur position en coordonnées cylindriques :

~v =
dOM

dt
=

d

dt
(r~er + z~k)

~v =
dr

dt
~er + r

d~er
dt

+
dz

dt
~k

Nous rappelons que :

~̇er = θ̇ ~eθ; ~̇eθ = −θ̇ ~er; ~̇k = 0

Donc le vecteur vitesse est :

~v = ṙ ~er + rθ̇ ~eθ + ż~k

Vecteur accélération en coordonnées cylindriques

Pour obtenir l’expression du vecteur accélération en coordonnées cylindriques, on
dérive le vecteur vitesse exprimé en coordonnées cylindriques :

~a =
d~v

dt
=

d

dt
(ṙ~er + rθ̇~eθ + ż~k)

= r̈~er + ṙ
d~er
dt

+ ṙθ̇~eθ + rθ̈~eθ + rθ̇
d~eθ
dt

+ z̈~k

= r̈~er + ṙ(θ̇~eθ) + ṙθ̇~eθ + rθ̈~eθ + rθ̇(−θ̇~er) + z̈~k

= (r̈ − rθ̇2)~er + (2ṙθ̇ + rθ̈)~eθ + z̈~k

Donc,
~a = (r̈ − rθ̇2)~er + (2ṙθ̇ + rθ̈)~eθ + z̈~k
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2. Cinématique du point matériel

2.4.4 Coordonnées sphériques
Définitions

Dans l’espace à trois dimensions on peut utiliser le système des coordonnées sphé-
riques, dont la base associée est une base mobile. Ce système de coordonnées est adéquat
dans les cas où le système étudié présente un point particulier O, de symétrie autour
duquel les rotations sont privilégiées. La position du point matériel est alors repéré par
la distance r et deux angles ϕ et θ. r étant la distance qui sépare le point matériel M du
point particulier O (l’origine). L’angle ϕ appelé longitude ou azimut est l’angle que fait
la projection du vecteur position sur le plan horizontal avec l’axe (OX) (similaire au cas
du système de coordonnées cylindriques). L’angle θ,appelé colatitude, est l’angle que
fait le vecteur position

−−→
OM avec l’axe (OZ).

M
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z

ex
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er

eθ

m

O

θ

 φ
eφ
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Om = ρ
r

OM = r

(a) La position de M
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x

z
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ez

dr

dθ

dφ

(b) Volume élémentaire

Dans la base sphérique le vecteur position s’écrit de la façon suivante :

~OM = r~er

Avec,


r = |OM | ; 0 ≤ r < +∞

ϕ = ( ~̂OM, i) ; 0 ≤ ϕ ≤ 2π

θ = ( ~̂OM, k) ; 0 ≤ θ ≤ π
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2. Cinématique du point matériel

Élément de surface en coordonnées sphériques

L’élément de surface infinitésimal s’obtient en considérant :
— une petite variation angulaire : dϕ,
— une petite variation angulaire : dθ.
L’arc correspondant à dθ a une longueur Rdθ. et L’arc correspondant à dϕ a une
longueur Rsin(θ)dϕ.
Donc, en coordonnées sphériques :

dS = R2sin(θ) dϕ dθ

Élément de volume en coordonnées sphériques

L’élément de volume infinitésimal s’obtient en considérant :
— une petite variation radial : dr,
— une petite variation angulaire : dϕ,
— une petite variation angulaire : dθ.
L’arc correspondant à dθ a une longueur Rdθ. et L’arc correspondant à dϕ a une
longueur Rsin(θ)dϕ.
Donc, en coordonnées sphériques :

dV = r2 dr dϕ sin(θ)dθ.

Lien entre les coordonnées cartésiennes et les coordonnées sphériques

On peut passer du système de coordonnées sphériques aux coordonnées cartésiennes
en utilisant les relations :


x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

Ces relations peuvent être inversées, pour exprimer les coordonnées sphériques en
termes des coordonnées cartésiennes :


r =

√
x2 + y2 + z2

θ = arctan
√

x2+y2

z

ϕ = arctan y
x
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2. Cinématique du point matériel

La base orthonormée associée aux coordonnées sphériques est notée (~er, ~eθ, ~eϕ). Le
vecteur ~er est le vecteur unitaire dans la direction et le sens de

−−→
OM . ~eθ est le vecteur

unitaire obtenu par une rotation de +π
2

à partir de ~er dans le plan (OZ, OM). Le vecteur
~eϕ est défini de telle sorte que le trièdre (~er, ~eθ, ~eϕ) soit direct.

Cette base est reliée à la base des coordonnées cartésiennes par les relations :


~er = sin θ cosϕ~i+ sin θ sinϕ~j + cos θ ~k

~eθ = cos θ cosϕ~i+ cos θ sinϕ~j − sin θ ~k

~eϕ = − sinϕ~i+ cosϕ~j

Vecteur vitesse en coordonnées sphériques

Le vecteur position en coordonnées sphériques dépend du vecteur ~er. Ce dernier
dépend des angles θ et ϕ, donc sa dérivée par rapport au temps est donnée par :

d~er
dt

=
d~er
dθ

dθ

dt
+

d~er
dϕ

dϕ

dt

En utilisant les expressions des vecteurs (~er, ~eθ, ~eϕ) en fonction des vecteurs (~i,~j,~k)
données précédemment, on montre que

d~er
dθ

= ~eθ et d~er
dϕ

= sin θ ~eϕ

Ainsi
d~er
dt

=
dθ

dt
~eθ + sin θ

dϕ

dt
~eϕ

Le vecteur vitesse est obtenu en dérivant le vecteur position :

~V (M/R) =
d
−−→
OM

dt
=

dr

dt
~er + r

d~er
dt

Ainsi, en coordonnées sphériques, le vecteur vitesse s’écrit :

~V (M/R) =
dr

dt
~er + r

dθ

dt
~eθ + r sin θ

dϕ

dt
~eϕ

Ou encore
~V (M/R) = ṙ ~er + rθ̇ ~eθ + rϕ̇ sin θ ~eϕ
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2. Cinématique du point matériel

Vecteur accélération en coordonnées sphériques

Le vecteur accélération en coordonnées sphériques est :

~γ(M/R) =
d~V (M/R)

dt

~γ(M/R) =
dṙ ~er + rθ̇ ~eθ + rϕ̇ sin θ ~eϕ

dt

~γ(M/R) =


r̈ − rθ̇2 − rϕ̇2 sin2 θ

2ṙθ̇ + rθ̈ − rϕ̇2 sin θ cos θ

2ṙϕ̇ sin θ + 2rθ̇ϕ̇ cos θ + rϕ̈ sin θ


(~er, ~eθ, ~eϕ)

Preuve :

On utilise l’expression du vecteur vitesse en coordonnées sphériques :

~V (M/R) =
d

dt

(
r~er + rθ̇~eθ + rϕ̇ sin θ ~eϕ

)
Pour dériver les vecteurs de la base (~er, ~eθ, ~eϕ) on utilise leurs expressions en fonction

des vecteurs de la base (~i,~j,~k). On obtient alors :

d~er
dθ

= ~eθ,
d~eθ
dθ

= −~er,
d~eθ
dϕ

= cos θ ~eϕ,
d~eϕ
dϕ

= − sin θ ~er − cos θ ~eθ

Les dérivées temporelles des vecteurs de la base (~er, ~eθ, ~eϕ) sont alors données par :

d~er
dt

=
d~er
dθ

dθ

dt
+

d~er
dϕ

dϕ

dt
⇒ d~er

dt
= θ̇ ~eθ + ϕ̇ sin θ ~eϕ

d~eθ
dt

=
d~eθ
dθ

dθ

dt
+

d~eθ
dϕ

dϕ

dt
⇒ d~eθ

dt
= −θ̇ ~er + ϕ̇ cos θ ~eϕ

d~eϕ
dt

=
d~eϕ
dϕ

dϕ

dt
⇒ d~eϕ

dt
= −ϕ̇ sin θ ~er + ϕ̇ cos θ ~eθ

Ainsi, en dérivant les composantes du vecteur vitesse en coordonnées sphériques ainsi
que les vecteurs de la base, on obtient alors l’expression finale du vecteur accélération
en coordonnées sphériques donnée ci-dessus.
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2. Cinématique du point matériel

2.4.5 Coordonnées curvilignes (Base de Frenet)
Dans le cas d’un mouvement plan on peut définir en chaque point M de la trajectoire

la base de Frenet. Pour cela on définit en tout point M un vecteur ~Ut, tangent à la
trajectoire et orienté dans le sens de celle ci, et on définit le vecteur ~Un perpendiculaire
à ~Ut et orienté vers la concavité de la trajectoire. Pour compléter le trièdre on définit un
vecteur ~B tel que le trièdre (~Ut, ~Un, ~B) est un trièdre directe c.à.d. ~B = ~Ut ∧ ~Un. Le
trièdre (~Ut, ~Un, ~B) est appelé repère de Serret-Frenet.

Figure 2.5 : base de Frenet.

Abscisse curviligne

Dans le cas d’un mouvement curviligne il est parfois utile d’utiliser l’abscisse cur-
viligne pour repérer la position du point matériel. Pour cela, on fixe un point A de la
trajectoire (voir la figure II.8). L’abscisse curviligne s(t) est alors définie comme étant la
distance curviligne du point fixe A au point M(t) qu’occupe le point matériel à l’instant
t :

ÂM = arc(AM) = s(t)

Figure 2.6 : Abscisse curviligne.
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2. Cinématique du point matériel

l’instant t′ = t+ dt, le point matériel occupant la position M ′(t′) on aura le vecteur
position : ÂM ′ = arc(AM ′) = s(t′)

Le déplacement élémentaire s’écrit alors : M̂M ′ = arc(MM ′) = s(t′)− s(t) = ds ds
est un arc de cercle de centre C et de rayon RC , appelé rayon de courbure. Les vecteurs
~Ut et ~Un peuvent alors être obtenue de façon analytique de la façon suivante

Vecteur vitesse dans le repère de Frenet

En dérivant le vecteur position par rapport au temps on trouve l’expression du
vecteur vitesse dans la base de Frenet :

~V (M/R) =
d ~OM

dt
=

ds

dt
~ut = V ~ut

Vecteur accélération dans le repère de Frenet

En dérivant le vecteur position par rapport au temps on trouve l’expression du
vecteur vitesse dans la base de Frenet :

~V (M/R) =
d~V (M/R)

dt

~V (M/R) =
dV

dt
~ut + V

d~ut

dt

Le vecteur tangent change de direction selon la courbure de la trajectoire :

d~ut

dt
=

V

Rc

~un,

où Rc est le rayon de courbure.

En remplaçant dans l’équation précédente :

~γ =
dV

dt
~ut︸ ︷︷ ︸

accélération tangentielle

+
V 2

Rc

~un︸ ︷︷ ︸
accélération normale

.

Prof. Raillani 27



Chapitre 3
Dynamique du point matériel

Dans le chapitre précédent, nous avons examiné le mouvement des corps sans nous
intéresser aux causes qui le provoquent ou le modifient, ce que l’on désigne par la
cinématique du point matériel. Le présent chapitre se consacre à la dynamique du
point matériel, c’est-à-dire à l’étude des causes du mouvement ainsi qu’à l’analyse du
comportement du point sous l’effet de forces déterminées.

3.1 Référentiels absolu et Galiléen
Le référentiel est un ensemble d’observateurs qui mesurent la position et le temps.

Le référentiel absolu est un référentiel considéré comme fixe, par contre le référentiel
Galiléen est en mouvement de translation uniforme par rapport à un référentiel absolu.

Si le principe d’inertie est vérifié dans un référentiel, il est dit référentiel galiléen.
Parmi ces référentiels galiléens, nous citerons :

— Le référentiel de héliocentrique (KEPLER) : L’origine de ce référentiel est le centre
d’inertie du Soleil et ses trois axes principaux sont orientés vers trois étoiles fixes.

— Le référentiel terrestre : est un système de référence dont le centre est un point sur
la Terre (souvent considéré comme le sol) et dont les axes sont liés à la rotation de
la Terre. Il est couramment utilisé pour décrire les mouvements à petite échelle,
comme ceux des personnes, des véhicules, des avions ou du vent.

— Le référentiel géocentrique : L’origine de ce référentiel est le centre d’inertie de la
terre Et ses trois axes sont orientés vers trois étoiles fixes.
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3. Dynamique du point matériel

Référentiel géocentrique

Référentiel terrestre

Référentiel héliocentrique

Le repère de la terre n’est pas réellement galiléen cause de son mouvement orbital et
son mouvement autour du soleil et de sa propre rotation autour de son axe. Mais dans
la plus grande majorité des expériences, on le considère comme étant un repère galiléen
car on fait des études avec des temps faibles.

3.2 Notion de masse, de la quantité de mouvement et
de force

3.2.1 Notion de masse
On sait tous que plus la masse d’un corps est grande, plus il est difficile de changer

son vecteur vitesse ou changer son mouvement (sa direction). Ainsi, on peut considérer
la masse comme une mesure de l’inertie. Il est facile pour une personne de faire bouger
une table que de faire bouger une armoire.

La masse est une grandeur physique scalaire caractérisant la résistance d’un corps
subir une modification de son mouvement et elle représente l’inertie du corps.

3.2.2 Notion de la quantité de mouvement

La quantité de mouvement, notée ~P , d’un point matériel est une grandeur vectorielle
permettant de caractérisée son mouvement. Elle définit comme étant le produit de sa
masse et de son vecteur vitesse.

~P = m~v

Ainsi, la quantité de mouvement est un vecteur ayant la même direction et le même
sens que la vitesse et a pour unité SI le kg.m/s
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3. Dynamique du point matériel

3.2.3 Notion de force
Un point matériel est en mouvement à cause des interactions entre la particule et

son environnement qui les subits. Ces interactions sont appelées forces.

La force, notée, est une grandeur vectorielle permettant de produire le mouvement
d’un point matériel ou sa déformation. Elle traduit une variation de la quantité de
mouvement. Le vecteur force s’écrit alors,

~F =
d~P

dt

La dérivée du vecteur de la quantité de mouvement donnée par :

d~P

dt
= ~v

dm

dt
+m

d~v

dt

Dans la mécanique newtonienne, la masse est une grandeur scalaire constante
(dm
dt

= 0). Donc,
d~P

dt
= m

d~v

dt

En identifiant la dérivée du vecteur de la vitesse ~v par rapport au temps comme étant
le vecteur accélération ~γ :

d~P

dt
= m~γ

3.3 Rappel des lois de Newton
Avant d’énoncer les trois lois de Newton qui régissent le mouvement des corps, il

convient de préciser que ces principes fondamentaux ne sont valables que dans des
référentiels galiléens.

3.3.1 1ère loi de Newton : Principe d’inertie
Dans un référentiel (R) galiléen, tout point matériel A mécaniquement isolé (ou

pseudo isolé), est soit au repos soit en mouvement rectiligne uniforme.∑
~F = ~0

Ce principe conduit à la loi de conservation de la quantité de mouvement totale d’un
système isolé ou pseudo isolé.Un repère galiléen est un repère ou le principe d’inertie est
applicables, on suppose que le repère est galiléen si en translation rectiligne uniforme
par rapport au repère de Copernic (héliocentrique).
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3.3.2 2ème loi de Newton : Principe fondamental de la dynamique
(PFD)

Considérons un système matériel S , de centre d’inertie G , de masse m , se déplaçant
dans un référentiel Galiléen R(O, x, y, z, t) . Si ce système n’est pas mécaniquement
isolé, c’est à dire s’il subit une action non compensée, le principe d’inertie nous traduit
le fait que sa quantité de mouvement ne peut pas être constante dans le temps. La
résultante des forces exercées sur un corps est la dérivée de la quantité de mouvement :

∑
~F =

d~P

dt
=

d

dt
m~v

Si la masse est constante,

∑
~F = m

d~v

dt

∑
~F = m~a

Cette relation associe le terme cinétique qui est l’accélération et le terme dynamique
qui est les forces exercées donc si on connaît les forces (la résultante des forces) on peut
déterminer la nature du mouvement d’un point matériel donné.

3.3.3 3ème loi de Newton : Principe de l’action et de réaction
Soit deux point matériel M1 et M2 en interaction et ne subissent que des forces

mutuelles. Soit f1/2 la force exercée sur M1 de la part de M2 et la force f2/1 exercée par
M2 sur M1 . Le principe des actions réciproques, nommé aussi principe de l’action ~F1/2

et de la réaction f2/1, énonce que ces deux forces ~F1/2 et ~F2/1, sont opposées et égales
en modules, donc :

~F1/2 = −~F2/1

‖~F1/2‖ = ‖~F2/1‖

Remarque :

La force exercée sur un corps est appelée action et la force exercée sur l’autre corps
est appelée réaction. Toute force est associée à une réaction. Les forces sont de même
nature. Il ne faut pas confondre avec la force du poids et la force de réaction (ces deux
forces ne sont pas de même nature).
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3.4 Classification des forces

3.4.1 Forces à distance
Le corps qui exerce la force n’est pas en contact avec celui sur lequel il agit. Cette

force s’exerce entre 2 objets pouvant être séparés par de l’air, de l’eau, du vide ou autre
chose. Il y a 3 sortes de forces à distance :

— Les forces de gravitation : La force gravitationnelle s’exerce entre deux masses
placées à une distance r l’une de l’autre (figure ci-dessous), c’est une force à
distance (une force attractive). Elle est de la forme :

~Fg = G
m1m2

r2
~u

Avec, G = 6.674× 10−11 m3 kg−1 s−2 est la constante gravitationnelle.
— Les forces électriques : Elles s’exercent entre deux corps portant des charges

électriques. Elles peuvent être aussi bien attractives que répulsives.
— Les forces magnétiques : Elles s’exercent entre des aimants ou entre des ces derniers

et certains matériaux (en particulier le fer).Elles aussi peuvent être attractives ou
répulsives.

— Les forces faibles et forces fortes : sont des forces microscopiques. Les premiers
types de force agissent à courte distance, elle s’observe dans les interactions entre
la matière et neutrinos. Par contre, les deuxièmes types de forces sont des forces
de très courte portée, elle assure la stabilité du noyau.

3.4.2 Forces de contact
Il faut obligatoirement qu’il y est contact entre les deux objets pour que naisse une

force de contact. Par exemple la force de traction d’un fil, mesurée par la tension du fil,
s’applique au point de contact objet-fil.

Réaction d’un support

La force que subit un objet posé sur un support horizontal en provenance du support
s’appelle réaction du support. La réaction du support sur un objet est répartie sur toute
la surface de contact support-objet. On peut représenter cette action par une force,
résultante de toutes les actions exercées sur toute cette surface.
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3. Dynamique du point matériel

Rn

P

L’objet subit, de la part de l’extérieur, deux forces : son poids ~P , appliqué au centre
d’inertie G, et la réaction du support ~Rn (figure ci-dessus). L’objet étant en équilibre,
on a :

~P + ~Rn = ~0

Cet équilibre de l’objet sur le support impose que le point d’application de la réaction
soit à l’intersection de la surface de contact et de la ligne d’action du poids de l’objet.

Forces de frottement solide

Le frottement est l’action d’une surface rigide sur un solide. Cette action s’oppose
au mouvement par rapport à la surface. Par exemple, en poussant un objet sur une table
avec une vitesse et après l’avoir lâché, l’objet ralentit et s’arrête. La perte de quantité
de mouvement montre qu’une force ~R qui s’oppose au mouvement. Cette force est dite
force de frottement.

R

P

Rt

Rn

Le rapport des réactions tangentielle ~RT et normale ~Rn définit ce qui s’appelle le
coefficient de frottement

— Si le corps est au repos, on définit le coefficient de frottement statique :

µs =
RT

RN

— Si le corps est en mouvement, on définit le coefficient de frottement cinétique :

µc =
RT

RN
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3. Dynamique du point matériel

Forces de frottement dans les fluides

Quand un corps solide se déplace dans un fluide (un gaz ou liquide) avec une faible
vitesse relative, la force de frottement est :

~f = −Kn~v

— K est le coefficient qui dépend de la forme du corps solide en mouvement.
— n est le coefficient de viscosité.

Force élastique

La force élastique est la force appliquée à un objet qui tend à reprendre sa forme
après avoir été déformé. Lorsque l’on allonge un ressort, apparait une force de rappel :

T = −K(l − l0)

Avec l0 longueur a vide du ressort, l la longueur du ressort et k la constante de
raideur.

Prof. Raillani 34


